Приложение

РАБОЧАЯ ПРОГРАММА

Предмет: Химия

Уровень: среднее общее образование

МБОУ «Уруссинская СОШ №2»

Разработчики: учителя химии Салимова Файруза Миннезагитовна Багауова Регина Фирдависовна

Личностные, метапредметные и предметные результаты освоения содержания курса «Химия» 10-11 класс.

Результаты изучения предмета:

Деятельность учителя в обучении химии в средней (полной) школе должна быть направлена на достижение обучающимися следующих **личностных результатов**:

- 1. в ценностно-ориентационной сфере чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
- 2. в трудовой сфере готовность к осознанному выбору дальнейшей образовательной и профессиональной траектории;
- 3. в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных)
 языковых средств;

– распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты ООО по предмету «Химия»

В результате изучения учебного предмета «Химия» на уровне среднего общего образования: Выпускник на базовом уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;
- демонстрировать на примерах взаимосвязь между химией и другими естественными науками;
- раскрывать на примерах положения теории химического строения А.М. Бутлерова;
- понимать физический смысл Периодического закона Д.И. Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;
- объяснять причины многообразия веществ на основе общих представлений об их составе и строении;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;
- прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;
- использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;
- приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);

- проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров,
 глюкозы, крахмала, белков в составе пищевых продуктов и косметических средств;
- владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- приводить примеры гидролиза солей в повседневной жизни человека;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ металлов и неметаллов;
- проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем.

Выпускник на базовом уровне получит возможность научиться:

- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- использовать методы научного познания при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной – с целью определения химической активности веществ;

- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний

Содержание курса «Органическая химия» для 10 класса

Курс «Органическая химия» рассчитан на 70 часов в год по 2 часа в неделю (1 час из федерального компонента, а 1 час из школьного). Это позволяет закончить в 10 классе «Органическую химию».

Курс «Общая химия» рассчитан на 34 часа в год, 1 час в неделю.

Распределение учебного времени

Класс	Предмет	Количество часов в году	Количество часов в неделю
10	Органическая химия.	70	2
11	Общая химия	34	1

Рабочая программа по химии составлена на основе Федерального компонента государственного стандарта среднего общего образования, авторской программы О.С. Габриеляна по химии для базового изучения химии в X –XI классах.

Название раздела	Краткое содержание	Количест
		во часов
Введение.	Научные методы познания веществ и химических явлений. Роль	1час
Методы познания в	эксперимента и теории в химии.	
химии	Предмет органической химии. Значение и роль органической химии в	
	системе естественных наук и в жизни общества. Краткий очерк истории	

	развития органической химии.	
	Демонстрации.	
	Коллекция органических веществ, материалов и изделий из них.	
	Модели молекул	
	СН4 и СН3ОН; С2Н2, С2Н4 и С6Н6; н-бутана и изобутана.	
Строение и		8 часов
классификация	Классификация органических соединений по строению «углеродного	
органических	скелета»: ациклические (алканы, алкены, алкины, алкадиены),	
соединений. Химические	карбоциклические (циклоалканы и арены) и гетероциклические.	
реакции органической	Классификация органических соединений по функциональным	
химии.	группам: спирты, фенолы, простые эфиры, альдегиды, кетоны,	
	карбоновые кислоты, сложные эфиры. Номенклатура тривиальная,	
	рациональная и ИЮПАК. Рациональная номенклатура как	
	предшественник номенклатуры ИЮПАК. Принципы образования	
	названий органических соединений по ИЮПАК: замещения,	
	родоначальной структуры, старшинства характеристических групп	
	(алфавитный порядок). Структурная изомерия и ее виды: изомерия	
	«углеродного скелета», изомерия положения (кратной связи и	
	функциональной группы), межклассовая изомерия. Пространственная	
	изомерия и ее виды: геометрическая и оптическая. Биологическое	
	значение оптической изомерии. Отражение особенностей строения	
	молекул геометрических и оптических изомеров в их названиях.	
	Демонстрации.	
	Образцы представителей различных классов органических соединений	
	и шаростержневые или объемные модели их молекул.	
	Таблицы «Названия алканов и алкильных заместителей» и « Основные	
	классы органических соединений».	
	Шаростержневые модели органических соединений различных	

классов. Модели молекул изомеров разных видов изомерии. Понятие о реакциях замещения. Галогенирование алканов и аренов, щелочной Понятие гидролиз галогеналканов. реакциях Гидрирование, присоединения. гидрогалогенирование, галогенирование. Реакции полимеризации и поликонденсации. Понятие о реакциях отщепления (элиминирования). Дегидрирование алканов. Дегидратация спиртов. Дегидрохлорирование примере галогеналканов. Понятие о крекинге алканов и деполимеризации полимеров. Реакции изомеризации. Взаимное влияние атомов в молекулах органических веществ. Правило Марковникова. Расчетные задачи. 1. Вычисление выхода продукта реакции от теоретически возможного. Понятие об углеводородах. Природные источники углеводородов. Углеводороды часа, Нефть и ее промышленная переработка. Фракционная перегонка, из них 2 термический и каталитический крекинг. Природный газ, его состав и часа практическое использование. Каменный уголь. Коксование каменного практиче Происхождение угля. природных источников углеводородов. ские Риформинг, нефтепродуктов. алкилирование И ароматизация работы Экологические аспекты добычи, переработки и использования полезных ископаемых. Алканы. Гомологический ряд и общая формула алканов. Строение молекулы метана и других алканов. Изомерия алканов. Физические свойства алканов. Алканы в природе. Промышленные способы получения: фракционная нефти. крекингалканов, перегонка Лабораторные способы получения Вюрца, алканов: синтез декарбоксилирование солей карбоновых кислот, гидролиз карбида алюминия. Реакции замещения. Горение алканов в различных условиях.

Термическое разложение алканов. Изомеризация алканов.

Применение алканов. Механизм реакции радикального замещения, его стадии. Практическое использование знаний о механизме (свободнорадикальном) реакций в правилах техники безопасности в быту и на производстве.

Алкены. Гомологический ряд и общая формула алкенов. Строение молекулы этилена и других алкенов. Изомерия алкенов: структурная и пространственная. Номенклатура и физические свойства алкенов. Получение этиленовых углеводородов из алканов, галогеналканов и спиртов.

Поляризация π -связи в молекулах алкенов на примере пропена. Реакции присоединения (галогенирование, гидрогалогенирование, гидратация, гидрирование). Реакции окисления и полимеризации алкенов. Применение алкенов на основе их свойств. Механизм реакции электрофильного присоединения к алкенам. Окисление алкенов в «мягких» и «жестких» условиях.

Алкины. Гомологический ряд алкинов. Общая формула. Строение молекулы ацетилена и других алкинов. Изомерия алкинов. Номенклатура ацетиленовых углеводородов. Получение алкинов: метановый и карбидный способы. Физические свойства алкинов. Реакции присоединения: галогенирование, гидрогалогенирование, гидратация (реакция Кучерова), гидрирование. Тримеризация ацетилена в бензол. Применение алкинов. Окисление алкинов. Особые свойства терминальных алкинов

Алкадиены. Общая формула алкадиенов. Строение молекул. Изомерия и номенклатура алкадиенов. Физические свойства алкадиенов.

Взаимное расположение π -связей в молекулах алкадиенов: кумулированное, сопряженное, изолированное. Особенности строения

сопряженных алкадиенов, их получение. Аналогия в химических свойствах алкенов и алкадиенов. Полимеризация

алкадиенов. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Работы С.В. Лебедева. Особенности реакций присоединения к алкадиенам с сопряженными π -связями.

Циклоалканы. Понятие о циклоалканах и их свойствах.

Гомологический ряд и общая формула циклоалканов. Напряжение цикла в С3H6, С4H8 и С5H10, конформации С6H12. Изомерия циклоалканов (по «углеродному скелету», цис-, транс-, межклассовая). Химические свойства циклоалканов: горение, разложение, радикальное замещение, изомеризация. Особые свойства циклопропана, циклобутана.

Арены. Бензол как представитель аренов. Строение молекулы бензола. Сопряжение π -связей. Изомерия и номенклатура аренов, их получение. Гомологи бензола. Влияние боковой цепи на электронную плотность сопряженного π -облака в молекулах гомологов бензола на примере толуола. Химические свойства бензола. Реакции замещения с участием бензола: галогенирование, нитрование и алкилирование. Применение бензола и его гомологов. Радикальное хлорирование бензола. Механизм и условия проведения реакции радикального хлорирования бензола. Каталитическое гидрирование бензола. Механизм реакций электрофильного замещения: галогенирования и нитрования бензола и его гомологов. Сравнение реакционной способности бензола и толуола в реакциях замещения. Ориентирующее действие группы атомов СН3— в реакциях замещения с участием толуола. Ориентанты I и II рода в реакциях замещения с участием аренов. Реакции боковых цепей алкилбензолов.

Расчетные задачи.

- 1. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.
- 2. Нахождение молекулярной формулы вещества по его относительной плотности и массовой доле элементов в соединениях.
- 3. Комбинированные задачи

Демонстрации. Коллекция «Природные источники углеводородов». Сравнение процессов горения нефти и природного газа. Образование нефтяной пленки на поверхности воды. Плавление

парафина и его отношение к воде (растворение, сравнение плотностей, смачивание). Разделение смеси бензин — вода с помощью делительной воронки

воронки.

Модели молекул алканов — шаростержневые и объемные. Восстановление оксида меди (II) парафином. Шаростержневые и объемные модели молекул структурных и пространственных изомеров алкенов. Объемные модели молекул алкенов. Получение этена из этанола. Обесцвечивание этеном бромной воды. Обесцвечивание перманганата калия. каучуконосов раствора (молочая, этеном фикуса). Шаростержневые одуванчиков ИЛИ модели молекул циклоалканов и алкенов. Шаростержневые и объемные модели молекул бензола и его гомологов.

Разделение с помощью делительной воронки смеси бензол — вода. Растворение в бензоле различных органических и неорганических (например, серы) веществ.

Лабораторные опыты.

- 1. Построение моделей молекул алканов.
- 2. Построение моделей молекул алкенов.

Практическая работа №1. Определение С,Н, хлора в органических веществах.

	<i>Практическая работа №2</i> Получение этилена и опыты с ним.			
	Контрольная работа №1 по теме: Углеводороды»			
Кислородосодержащие	Спирты и фенолы Состав и классификация спиртов. Изомерия спиртов	17 часов,		
органические	(положение гидроксильных групп, межклассовая, «углеродного			
соединения	скелета»). Физические свойства спиртов, их получение.	час		
	Межмолекулярная водородная связь. Особенности электронного	практиче		
	строения молекул спиртов. Химические свойства спиртов,	ская		
	обусловленные наличием в молекулах гидроксильных групп:	работа		
	образование алкоголятов, взаимодействие с галогеноводородами,			
	межмолекулярная и внутримолекулярная дегидратация, этерефикация,			
	окисление и дегидрирование спиртов. Особенности свойств			
	многоатомных спиртов. Качественная реакция на многоатомные			
	спирты. Важнейшие представители спиртов. Физиологическое действие			
	метанола и этанола. Алкоголизм и его последствия. Профилактика			
	алкоголизма.			
	Фенолы. Фенол, его физические свойства и получение. Химические			
	свойства фенола, как функция его строения. Кислотные свойства.			
	Взаимное влияние атомов и групп в молекулах органических веществ			
	на примере фенола. Поликонденсация фенола с формальдегидом.			
	Качественная реакция на фенол. Применение фенола. Классификация			
	фенолов. Сравнение кислотных свойств веществ, содержащих			
	гидроксильную группу: воды, одно- и многоатомных спиртов, фенола.			
	Электрофильное замещение в бензольном кольце. Применение			
	производных фенола Демонстрации. Физические свойства этанола, пропанола-1 и бутанола-			
	1. Шаростержневые модели молекул изомеров с молекулярными			
	формулами СЗН8О и С4Н10О.			
	Количественное вытеснение водорода из спирта натрием. Сравнение			

скоростей взаимодействия натрия с этанолом, Пропанолом-2, глицерином. Получение простого эфира. Получение сложного эфира. Получение этена из этанола. Реакция фенола с хлоридом железа (III). Реакция фенола с формальдегидом.

Лабораторные опыты Растворимость спиртов с различным числом атомов углерода в воде. Растворимость многоатомных спиртов в воде. Взаимодействие многоатомных спиртов с гидроксидом меди (II).

Взаимодействие водного раствора фенола с бромной водой.

Альдегиды. Кетоны. Строение молекул альдегидов и кетонов, Особенности строения карбонильной изомерия и номенклатура. группы. Физические свойства формальдегида и его гомологов. Отдельные представители альдегидов и кетонов. Химические свойства альдегидов, обусловленные наличием в молекуле карбонильной группы атомов (гидрирование, окисление аммиачными растворами оксида серебра и гидроксида меди (II). Качественные реакции на альдегиды. Реакция поликонденсации формальдегида с фенолом. Особенности строения и свойств кетонов, химических присоединение карбонильным соединениям. Взаимное влияние атомов в молекулах. Галогенирование альдегидов и кетонов по ионному механизму на свету. **Демонстрации.** Шаростержневые модели молекул альдегидов и изомерных им кетонов. Реакция «серебряного зеркала». Окисление альдегидов гидроксидом меди (II).

Лабораторные опыты. Реакция «серебряного зеркала».

Окисление альдегидов гидроксидом меди (II).

Карбоновые кислоты, сложные эфиры и жиры Строение молекул карбоновых кислот и карбоксильной группы. Классификация и номенклатура карбоновых кислот. Физические свойства карбоновых кислот и их зависимость от строения молекул. Карбоновые кислоты в

природе. Биологическая роль карбоновых кислот. Общие свойства неорганических и органических кислот (взаимодействие с металлами, оксидами металлов, основаниями, солями). Влияние углеводородного радикала на силу карбоновой кислоты. Реакция этерификации, условия ее проведения. Химические свойства непредельных карбоновых кислот, обусловленные наличием π-связи в молекуле. Реакции с участием бензойной кислоты. Сложные эфиры. Строение сложных эфиров. Изомерия сложных эфиров («углеродного скелета» и межклассовая). Номенклатура сложных эфиров. Обратимость реакции этерификации, гидролиз сложных эфиров. Равновесие реакции этерификации — гидролиза; факторы, влияющие на него.

Решение расчетных задач на определение выхода продукта реакции (в %) от теоретически возможного, установление формулы и строения вещества по продуктам его сгорания (или гидролиза).

Жиры. Жиры — сложные эфиры глицерина и карбоновых кислот. Состав и строение жиров. Номенклатура и классификация жиров. Масла. Жиры в природе. Биологические функции жиров. Свойства жиров. Омыление жиров, получение мыла. Объяснение моющих свойств мыла. Гидрирование жидких жиров. Маргарин. Понятие о СМС. Объяснение моющих свойств мыла и СМС (в сравнении).

Демонстрации. Знакомство с физическими свойствами некоторых карбоновых кислот: муравьиной, уксусной, пропионовой, масляной, щавелевой, лимонной, олеиновой, стеариновой, бензойной. Возгонка бензойной кислоты. Отношение различных карбоновых кислот к воде. Отношение к бромной воде и раствору перманганата калия предельной и непредельной карбоновых

	кислот.				
	Лабораторные опыты . Построение моделей молекул изомерных				
	карбоновых кислот и сложных эфиров. Сравнение силы уксусной и				
	соляной кислот в реакциях с цинком. Взаимодействие карбоновых				
	кислот с основными оксидами, Основаниями, амфотерными				
	гидроксидами и солями. Растворимость жиров в воде и органических				
	растворителях.				
	Экспериментальные задачи.				
	1. Распознавание растворов ацетата натрия, карбоната натрия, силиката				
	натрия и стеарата натрия.				
	Практическая работа №3 Получение уксусной кислоты из ацетата				
	натрия и изучение ее свойств.				
	Контрольная работа №2 «карбоновые кислоты и их производные»				
Углеводы	Моно-, ди- и полисахариды. Представители каждой группы.	5 часов,			
	Биологическая роль углеводов. Их значение в жизни человека и	из них 1			
	общества. Моносахариды. Глюкоза, ее физические свойства. Строение	час			
	молекулы. Зависимость химических свойств глюкозы от строения	практиче			
	молекулы. Взаимодействие с гидроксидом меди (II) при комнатной	ская			
	температуре и нагревании, этерификация, реакция «серебряного	работа			
	зеркала», гидрирование. Реакции брожения глюкозы: спиртового,				
	молочнокислого. Глюкоза в природе. Биологическая роль глюкозы.				
	Фруктоза как изомер глюкозы. Сравнение строения молекул и				
	химических свойств глюкозы и фруктозы. Фруктоза в природе и ее				
	биологическая роль. Дисахариды. Строение дисахаридов.				
	Восстанавливающие и невосстанавливающие дисахариды. Сахароза,				
	лактоза, мальтоза, их строение и биологическая роль. Гидролиз				
	дисахаридов. Промышленное получение сахарозы из природного сырья.				
	Полисахариды. Крахмал и целлюлоза (сравнительная характеристика:				

строение, свойства, биологическая роль). Физические свойства полисахаридов. Химические свойства полисахаридов. Гидролиз полисахаридов. Качественная реакция на крахмал. Полисахариды в природе, их биологическая роль. Применение полисахаридов. Понятие об искусственных волокнах. Взаимодействие целлюлозы с неорганическими и карбоновыми кислотами — образование сложных эфиров.

Демонстрации. Образцы углеводов и изделий из них.

Взаимодействие сахарозы с гидроксидом меди (II). Реакция «серебряного зеркала» для глюкозы. Ознакомление с физическими свойствами целлюлозы и крахмала. Набухание целлюлозы и крахмала в воде.

Лабораторные опыты. Ознакомление с физическими свойствами глюкозы. Взаимодействие глюкозы с гидроксидом меди (II) при обычных условиях и при нагревании. Взаимодействие глюкозы и сахарозы с аммиачным раствором оксида серебра. Знакомство с коллекцией волокон.

Экспериментальные задачи.

- 1. Распознавание растворов глюкозы и глицерина.
- 2. Определение наличия крахмала в меде, хлебе, маргарине.

Азотосодержащие органические соединения.

Амины. Состав и строение аминов. Классификация, изомерия и номенклатура аминов. Алифатические амины. Анилин. Получение аминов: алкилирование аммиака, восстановление нитросоединений (реакция Зинина). Физические свойства аминов. Химические свойства аминов: взаимодействие с водой и кислотами. Гомологический ряд ароматических аминов. Взаимное влияние атомов в молекулах на примере аммиака, алифатических и ароматических аминов. Применение аминов. Аминокислоты и белки. Состав и строение молекул

6 часов.

аминокислот. Изомерия аминокислот. Двойственность кислотноосновных свойств аминокислот и ее причины. Взаимодействие аминокислот с основаниями. Взаимодействие аминокислот кислотами, образование сложных эфиров. Образование внутримолекулярных солей иона). Реакция поликонденсации (биполярного аминокислот. Синтетические волокна (капрон, энант и др.) Биологическая роль аминокислот. Применение аминокислот. Белки как природные биополимеры. Пептидная группа атомов и пептидная связь. Пепдиды. Белки. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции . Биологические функции белков. Значение белков. Четвертичная структура белков как агрегация белковых и небелковых молекул Нуклеиновые кислоты. Общий план строения нуклеотидов. Понятие о пиримидиновых и пуриновых основаниях. Первичная, вторичная и третичная структуры молекул ДНК. Биологическая роль ДНК и РНК. Генная инженерия и биотехнология.

Демонстрации. Взаимодействие анилина и метиламина с водой и кислотами. Отношение бензола и анилина к бромной воде. Нейтрализация щелочи аминокислотой. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки. Модели молекулы ДНК и различных видов молекул РНК.

Лабораторные опыты. Построение моделей молекул изомерных аминов. Качественные реакции на белки.

Биологически активные вещества

Витамины. Понятие о витаминах. Их классификация и обозначение. Нормы потребления витаминов. Водорастворимые (на примере витамина C) и жирорастворимые (на примере витаминов A и D) витамины. Понятие об авитаминозах, гипер- и гиповитаминозах.

7 часов

Профилактика Отдельные авитаминозов. представители водорастворимых витаминов (С, РР, группы В) и жирорастворимых витаминов (А, D, Е). Их биологическая роль. Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы. Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности фермента от температуры и рН среды. Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и Лекарства. Понятие о белковые гормоны. лекарствах химиотерапевтических препаратах. Безопасные способы применения, формы. Краткие исторические лекарственные сведения возникновении и развитии химиотерапии. Механизм действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе анализа химического строения. Вредные привычки и факторы, разрушающие здоровье.

Демонстрации. Образцы витаминных препаратов. Поливитамины. Иллюстрации фотографий животных с различными формами авитаминозов. Сравнение Белковая природа инсулина (цветные реакции на белки).

Лабораторные опыты. Обнаружение витамина А в растительном масле. Обнаружение витамина С в яблочном соке. Ферментативный гидролиз крахмала под действием амилаз. Химия и жизнь. Знакомство с образцами химических средств санитарии и гигиены. Изучение инструкций по применению лекарственных, взрывоопасных, токсичных и горючих препаратов, применяемых в быту.

Контрольная работа №3 «Классы органических веществ»

Обобщение	2 часа
	70 часов

Содержание программы «Общая химия» 11 класс

За основу взята программа курса химии для X– XI классов общеобразовательных учреждений (базовый уровень) О.С. Габриеляна и Стандарт среднего общего образования по химии (базовый уровень)

Название раздела	Краткое содержание	Количест
		во часов
Тема 1. Периодический	Открытие Д.И.Менделеевым периодического закона. Важнейшие	3 часа
закон и строение атома	понятия химии: атом, относительная атомная и молекулярная массы,	
	валентность и степени окисления. Открытие Д.И.Менделеевым	
	периодического закона. Периодический закон в формулировке	
	Д.И.Менделеева. Периодическая система Д.И.Менделеева.	
	Периодическая система Д.И.Менделеева как графическое отображение	
	периодического закона. Короткий вариант периодической системы.	
	Периоды и группы. Значение периодического закона и периодической	
	системы.	
	Строение атом. Атом – сложная частица. Ядро: протоны и	
	нейтроны. Изотопы. Электроны. Электронная оболочка.	
	Энергетический уровень. Орбитали: s- и p- орбитали. Распределение	
	электронов по энергетическим уровням и орбиталям. Электронная	
	конфигурация атома.	
	Периодический закон и строение атома. Современное понятие о	
	химическом элементе. Современная формулировка периодического	
	закона. Причина периодичности в изменении свойств химических	
	элементов. Особенности заполнения энергетических уровней в	
	электронных оболочках переходных элементов. Электронные семейства	
	элементов: s- и p- элементы.	
	Демонстрации. Различные формы периодической системы	

	Д.И.Менделеева.	
Тема 2 Строение	Теория строения органических соединений А.М.Бутлерова. Простые и	10 часов
химических веществ	сложные вещества. Химическое строение как порядок связи	B TOM
лимических вещеетв	(соединения) атомов химических элементов в молекуле согласно их	числе 1
	валентности. Основные положения теории химического строения.	час
	Полимеры. Пластмассы. Биополимеры. Белки. Нуклеиновые кислоты.	практиче
	Волокна.	ская
	Химическая связь. Виды химической связи. Ковалентная	работа
	химическая связь. Электроотрицательность. Ковалентная полярная и	passia
	ковалентная неполярная химические связи. Обменный и донорно-	
	акцепторный механизмы образования ковалентной связи. Вещества	
	молекулярного и немолекулярного строения. Закон постоянства состава	
	для веществ молекулярного механизм. Ионная химическая связь.	
	Катионы и анионы. Ионная связь как особый случай ковалентной	
	полярной связи. Металлическая химическая связь. Общие физические	
	свойства металлов. Сплавы. Черные и цветные сплавы. Водородная	
	химическая связь. Водородная связь как особый случай	
	межмолекулярного взаимодействия. Внутримолекулярная водородная	
	связь и ее роль в организации структур биополимеров.	
	Агрегатные состояния веществ. Газы. Закон Авогадро. Для газов.	
	Молярный объем газообразных веществ (н.у.). Жидкости.	
	Типы кристаллических решеток. Кристаллическая решетка.	
	Ионные, металлические, атомные и молекулярные кристаллические	
	решетки. Аллотропия. Амфотерные вещества.	
	Чистые вещества и смеси. Смеси и химические соединения.	
	Гомогенные и гетерогенные смеси. Массовая и объемная доли	
	компонентов в смеси. Массовая доля примесей. Дисперсные системы.	
	Понятие о дисперсной системе. Дисперсная фаза и дисперсионная	

среда. Классификация дисперсных систем. Коллоидные дисперсные системы. Золи и гели. Значение дисперсных систем в природе и жизни человека.

Растворы. Растворы как гомогенные системы, состоящие из частиц растворителя, растворенного вещества и продуктов их взаимодействия. Массовая доля растворенного вещества. Типы растворов.

Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток сухого льда» (или иода), алмаза, графита (или кварца). Модель молярного объема газов. Три агрегатных состояния воды.

Лабораторный опыт. Определение типа кристаллической решетки вещества и описание его свойств.

Практическая работа №1. «Распознавание пластмасс и волокон» Контрольная работа №1 по теме «строение вещества»

Тема 3. Химические реакции

Классификация химических реакций. Классификация химических реакций по числу и составу реагирующих веществ и продуктов реакции. Реакции разложения, соединения, замещения и обмена в неорганической Реакции химии. присоединения, отщепления, замещения и изомеризации в органической химии. Классификация химических реакций по тепловому эффекту. Экзо- и эндотермические реакции. Термохимические уравнения. Скорость химической реакции. Зависимость скорости реакции концентрации давления, OTтемпературы, природы реагирующих веществ., площади соприкосновения и катализатора. Катализ. Катализаторы. Ферменты и неорганических катализаторов. Применение отличия катализаторов и ферментов. Понятие о биотехнологии.

Химическое равновесие. Обратимые и необратимые реакции.

8 часов
в том
числе 1
час
практиче
ская
работа

Химическое равновесие и способы его смещения на примере получения аммиака. Синтез аммиака в промышленности.

Окислительно-восстановительные Окислительнопроцессы. восстановительные реакции. Окислитель и восстановитель.

Теория электролитической диссоциации.. Электролиты неэлектролиты. Степень электролитической диссоциации. Сильные и слабые электролиты. Кислоты в свете теории электролитической диссоциации, их классификация и общие свойства. Основания в свете теории электролитической диссоциации, их классификация и общие свойства. Соли в свете теории электролитической диссоциации, их классификация и общие свойства.

Гидролиз солей. Реакция среды (рН) в растворах гидролизующихся солей. Случаи гидролиза солей. Гидролиз органических веществ, его значение.

Демонстрации. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Гидролиз карбонатов щелочных металлов и нитратов цинка или свинца. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей.

Лабораторные опыты.

- 1. Реакции, идущие с образованием осадка, газа и воды.
- 2. Различные случаи гидролиза солей.
- 3. Ознакомление с дисперсными системами.

Практическая работа №2 Гидролиз солей.

Контрольная работа №2. по теме «химические реакции»

Тема 4. Вешества свойства вешеств

Металлы. Физические, химические свойства металлов. Получение металлов. Металлы главных и побочных подгрупп. Коррозия металлов окислительно-восстановительный процесс. Способы защиты час

10

часов

из них 1

	металлов от коррозии. Электролиз. Электролиз растворов и расплавов	практиче			
	электролитов на примере хлорида натрия. Электролитическое				
	получение алюминия. Практическое значение электролиза. Оксиды	работа			
	металлов, оснований. Амфотерные соединения.				
	Неметаллы. Физические, химические свойства неметаллов. Оксиды				
	неметаллов. Кислоты. Генетическая связь между классами				
	неорганических соединений.				
	Лабораторные опыты.				
	1. Реакция замещения меди железом в растворе сульфата меди (II).				
	2. Получение кислорода разложением пероксида водорода с помощью				
	диоксида марганца.				
	3. Получение водорода взаимодействием кислоты с цинком.				
	Практическая работа №3 по теме «решение экспериментальных				
	задач по неорганической химии.»				
	Контрольная работа №3 по теме «вещества и их свойства»				
Тема 5. Химия в жизни	Перспективы развития химической науки и химического производства.	3 часа			
общества	Химия и проблемы охраны окружающей среды: химия и производство,				
	химия и сельское хозяйство. Химия и экология, химия и повседневная				
	жизнь человека. Химия и энергетика. Альтернативные источники				
	энергии.				
		34 часа			

Тематическое планирование (10 класс)

№ урока	Название	Количество часов		
		всего	Из них (формы контроля)	
			Контрольные работы	Практические работы
1	Введение. Методы познания в химии	1	-	-
2	Строение и классификация органических соединений. Химические реакции органической химии.	8	-	-
3	Углеводороды	24	1	2
4	Кислородосодержащие органические соединения	17	1	1
5	Углеводы	5	-	1
6	Азотосодержащие органические соединения	6	-	-
7	Биологически активные вещества	7	1	-
8	обобщение	2		
		70	3	4

Тематическое планирование (11 класс)

№ урока	Название	Количество часов		
		всего	Из них (формы контроля)	
			Контрольные работы	Практические работы
1	Периодический закон и строение атома	3	- paoorbi	-
2	Строение химических веществ	10	1	1
3	Химические реакции	8	1	1
4	Вещества и свойства веществ	10	1	1
5	Химия в жизни общества	3	-	-
		34	3	3